Calicheamicin-DNA complexes: warhead alignment and saccharide recognition of the minor groove.

نویسندگان

  • N Ikemoto
  • R A Kumar
  • T T Ling
  • G A Ellestad
  • S J Danishefsky
  • D J Patel
چکیده

The solution structures of calicheamicin gamma 1I, its cycloaromatized analog (calicheamicin epsilon), and its aryl tetrasaccharide complexed to a common DNA hairpin duplex have been determined by NMR and distance-refined molecular dynamics computations. Sequence specificity is associated with carbohydrate-DNA recognition that places the aryl tetrasaccharide component of all three ligands in similar orientations in the minor groove at the d(T-C-C-T).d(A-G-G-A) segment. The complementary fit of the ligands and the DNA minor groove binding site creates numerous van der Waals contacts as well as hydrogen bonding interactions. Notable are the iodine and sulfur atoms of calicheamicin that hydrogen bond with the exposed amino proton of the 5'- and 3'-guanines, respectively, of the d(A-G-G-A) segment. The sequence-specific carbohydrate binding orients the enediyne aglycone of calicheamicin gamma 1I such that its C3 and C6 proradical centers are adjacent to the cleavage sites. While the enediyne aglycone of calicheamicin gamma 1I is tilted relative to the helix axis and spans the minor groove, the cycloaromatized aglycone is aligned approximately parallel to the helix axis in the respective complexes. Specific localized conformational perturbations in the DNA have been identified from imino proton complexation shifts and changes in specific sugar pucker patterns on complex formation. The helical parameters for the carbohydrate binding site are comparable with corresponding values in B-DNA fibers while a widening of the groove is observed at the adjacent aglycone binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minor groove-binding architectural proteins: structure, function, and DNA recognition.

To date, high-resolution structures have been solved for five different architectural proteins complexed to their DNA target sites. These include TATA-box-binding protein, integration host factor (IHF), high mobility group I(Y)[HMG I(Y)], and the HMG-box-containing proteins SRY and LEF-1. Each of these proteins interacts with DNA exclusively through minor groove contacts and alters DNA conforma...

متن کامل

A DNA minor groove electronegative potential genome map based on photo-chemical probing

The double-stranded DNA of the genome contains both sequence information directly relating to the protein and RNA coding as well as functional and structural information relating to protein recognition. Only recently is the importance of DNA shape in this recognition process being fully appreciated, and it also appears that minor groove electronegative potential may contribute significantly in ...

متن کامل

Synthesis of Cu(II), Ni(II), Zn(II), Co(III) and Fe(III) complexes using Deferoxamine and their DNA binding affinity, plasmid DNA cleavage studies

New and versatile route for the preparation of Deferoxamine from 5-aminopentan-1-ol and their Cu(II), Ni(II), Zn(II), Co(III) and Fe(III) (11 to 15) complexes were synthesized and characterized. The mode of binding interactions of synthesized complexes 11 to 15 with CT – DNA was monitored by absorption spectral titrations, fluorescent spectral titrations and viscosity measurements. The intrinsi...

متن کامل

Targeting DNA-binding drugs to sequence-specific transcription factor.DNA complexes. Differential effects of intercalating and minor groove binding drugs.

Intercalating, minor groove binding, and covalently bonding drugs were evaluated by mobility shift assays for their ability to interfere with transcription factors binding to their respective DNA recognition sequences. The Cys2His2 zinc finger proteins EGR1, WT1, and NIL2A, the basic leucine-zipper protein wbJun/wbFos, and the minor groove binding protein hTBP were chosen as representative tran...

متن کامل

A peptide interaction in the major groove of RNA resembles protein interactions in the minor groove of DNA.

A 17-amino acid arginine-rich peptide from the bovine immunodeficiency virus Tat protein has been shown to bind with high affinity and specificity to bovine immunodeficiency virus transactivation response element (TAR) RNA, making contacts in the RNA major groove near a bulge. We show that, as in other peptide-RNA complexes, arginine and threonine side chains make important contributions to bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 92 23  شماره 

صفحات  -

تاریخ انتشار 1995